Nonlinear vibrations, localisation and energy transfer

I recently had the privilege of being invited to the 6th conference on Nonlinear Vibrations, Localization and Energy Transfer in Liege, 4-8 July 2016. The conference was superbly organised by Gaetan Kerschen and Jean-Philippe Noël in remarkable surroundings and with very good food (and beer — a trip to the Val-Dieu abbey to taste good Belgian beer was a highlight of the social part of the conference!).

The conference was a good mix of cutting-edge research combined with tutorial lectures for PhD students (and above!) on a range of topics. The lectures on nonlinear system identification were particularly useful for me — it’s an area that I’m keen to learn more about and import into my own work.

I had the pleasure of presenting on “Control-based Continuation – A new experimental approach for testing nonlinear dynamic systems” (with co-authors Ludovic Renson and Simon Neild); hopefully I was able to impart some of the enthusiasm we have for working on nonlinear experiments and understanding their nonlinear dynamics and bifurcations via numerical continuation!

Other talks of particular interest were by Simon Peter (Stuttgart) and Peter Bruns (Hannover) on using phase-locked loops to extract backbone (nonlinear normal modes) from experiments. Their approaches are highly complementary to my own. Cyril Touzé also gave a fascinating talk on turbulence in metallic plates, along with convincing experiments that show energy transfers from low-frequency modes to higher-frequency modes of vibration. I was also pleased to see that software developments are slowly propagating through into applied communities; Bruno Cochelin presented an interesting take on using Automatic Differentiation for high-order numerical continuation methods, I’m curious as to how far this can be applied.

Overall a thoroughly productive week!

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.